A phonotactic/tonotactic grammar for Tokyo Japanese that clusters by lexical strata does not overfit

LSA 2024 presentation

Satoru Ozaki
University of Massachusetts Amherst
sozaki@umass.edu
ikazos.gitlab.io

January 5, 2024

Summary

At least three etymological strata in Tokyo Japanese (TJ):

- (1) a. Native Japanese words
 - b. Sino-Japanese words
 - c. Foreign loanwords

Different strata, different phonotactic and tonotactic properties.

Should we analyze TJ with...

- (2) a. A **non-clustering** grammar that treats all strata equally? Or...
 - b. A **clustering** grammar that can treat the strata differently?

Result: Clustering MaxEnt grammars don't overfit.

Roadmap

(3) a. Background

- i. TJ strata and their properties
- ii. Two kinds of grammars: non-clustering vs. clustering
- iii. The model comparison problem

b. **Study**

- i. Data
- ii. Learning MaxEnt grammars
- iii. Comparing the learned grammars
- c. Future work & conclusion

The etymological strata of TJ nouns

(4) a. Native Japanese words

Examples: kami 'hair', tobira 'door', madoromi 'drowse'

b. Sino-Japanese (SJ) words

Examples: sen 'thousand', dempa 'phone signal', gengogaku 'linguistics'

c. Foreign loanwords (loanwords from languages other than Chinese) Examples: *pen* 'pen', *piiman* 'bell peppers', *budda* 'Buddha'

The etymological strata of TJ nouns

Many differences (Frellesvig 2010; Fukuzawa 1998; Gelbart 2005; Gelbart and Kawahara 2007; Ito and Mester 1995a,b, 1999; Moreton and Amano 1999; Morita and O'Donnell 2022):

- (5) a. No voiceless obstruent after nasals (e.g. *[nt]) in native words. Examples: SJ sintai 'body', foreign ranku 'rank'
 - b. Nongeminate [p] only occurs in foreign words. Examples: pai 'pie', apo 'appointment'
 - c. [φa], [φi], [φe], [φo] only occur in foreign words.
 Examples: φairu 'file', φinrando 'Finland', φeruto 'felt', φorumu 'form'
 - d. Likelihood of accent (Kubozono 2006, 2011): Native: 29%, SJ: 49%, foreign: 93%.

Two kinds of grammars

(6) a. A non-clustering grammarUse a single grammar to predict the distribution of all TJ nouns.

A clustering grammar
 Use one grammar to predict the distribution of TJ nouns in each stratum.

Two questions:

- (7) a. Learnability (← lots of previous work) How do you build a clustering learner?
 - b. Model comparison (← this work!)
 Which kind of grammar makes a better trade-off between model size and likelihood?

Previous work: learnability

A clustering learner must decide on:

- (8) a. Number of clusters.
 - b. Which word belongs to which cluster (i.e., assignment).
 - c. The grammar for each cluster.

Unsupervised learner: figures everything out by itself (Ito and Mester 1999; Morita and O'Donnell 2022).

(Semi-)supervised learner: some information is given (Shaw 2006).

Learners have morphological and orthographic cues to figure out assignment (Gelbart and Kawahara 2007; Ito, Mester, and Padgett 2001).

This work: model comparison

Each grammar makes a trade-off between:

- (9) a. Maximizing the predicted **likelihood** of the observed data
 - b. Minimizing the **number of parameters**

There are quantitative criteria that measures such trade-off, e.g. the **Bayesian Information Criterion** (BIC) (Schwarz 1978).

Research question

Does the clustering grammar (with the correct number of clusters and assignment) make a better trade-off than the non-clustering grammar, w.r.t. such criteria?

Specifically:

(10) a. Number of clusters.

Given

b. Which word belongs to which cluster (i.e., assignment).

Given

c. The grammar for each cluster.

Learned

By giving away (10a) and (10b), I show what performance a learner can achieve in principle.

(11) a. **Data**

Use corpora to build:

- i. The TJ nominal lexicon.
- ii. The native, SJ and foreign sublexicons.

b. Learning grammars

Use the UCLA Phonotactic Learner (Hayes and Wilson 2008) to learn:

i. A non-clustering grammar.

One set of constraints over the entire TJ lexicon.

ii. A clustering grammar.

One set of constraints over each sublexicon.

c. Compare the grammars

Use the BIC to compare the two grammars.

I combine two corpora:

- (12) a. Balanced Corpus of Contemporary Writtern Japanese (Maekawa et al. 2013) 100m words. Provides etymological stratum for each word.
 - b. NHK's New Dictionary of Japanese Pronunciation and Accentuation 75k words. Provides **accent position** for each word.

This allows me to build (i) a TJ lexicon and (ii) the native, SJ and foreign sublexicons separately.

Data: phonological representations

Vv, vV

vnvn

vaVr. vav

Vnvr. vrvr

vivv, Vi

I represent each word as (i) a sequence of mora types and (ii) the presence/position of the accent. Five mora types (Vance 2008):

- (13)a. **V** – Optional consonant + vowel E.g. $/_{\mathbf{u}}\mathbf{A}_{\mathbf{u}}\mathbf{k}\mathbf{i}/, /_{\mathbf{u}}\mathbf{t}\mathbf{a}_{\mathbf{u}}\mathbf{K}\mathbf{I}/$
 - b. **Q** First half of a geminate consonant
 - E.g. /,,na,,t,,TO,,o/, /,,ma,,p,,pu/
 - c. N Moraic nasal E.g. $/_{\parallel}a_{\parallel}m_{\parallel}pa_{\parallel}n/$
 - d. **R** Second half of a long vowel
 - E.g. / SE n ta a/, / to o kyo o/
 - e. **J** Second half of a diphthong
 - E.g. / ga, i ko ku/, / KO, i/

Notation: lowercase = unaccented, UPPERCASE = accented.

Data: phonological representations

Sequence of feature-value matrices (as required by the UCLA Phonotactic Learner).

Five features for five mora types, one feature for accentedness.

Example: vqNrj

$$(14) \quad \begin{bmatrix} [+v] \\ [-q] \\ [-n] \\ [-r] \\ [-j] \\ [-acc] \end{bmatrix} \begin{bmatrix} [-v] \\ [+q] \\ [-n] \\ [-n] \\ [-j] \\ [-acc] \end{bmatrix} \begin{bmatrix} [-v] \\ [-q] \\ [-n] \\ [-r] \\ [-j] \\ [+acc] \end{bmatrix} \begin{bmatrix} [-v] \\ [-q] \\ [-n] \\ [-r] \\ [-j] \\ [-acc] \end{bmatrix}$$

Learning grammars

I use the UCLA Phonotactic Learner (Hayes and Wilson 2008).

d = maximum number of learned constraints: 50, 75 and 100.

Two setups, five runs per setup:

(15) a. Non-clustering grammar

One set of d constraints over the entire TJ lexicon. Likelihood is the likelihood of the entire lexicon.

b. Clustering grammar

One set of d constraints over each sublexicon. Likelihood is the product of the sublexicon likelihoods.

Compare the grammars

BIC: $k \log N - 2 \log \mathcal{L}$, where:

- (16) a. k is the number of parameters, i.e. the number of constraints;
 - b. N is the number of observations;
 - c. \mathcal{L} is the likelihood.

 $\it k$ for clustering grammars is 3 times that for non-clustering grammars.

Lower BIC = better trade-off between grammar fit and grammar size.

Setup			d = 50	d = 75	d = 100
Non-clustering	$\log \mathcal{L}$	Avg.	-401,156	-364,282	-309,266
		Std.	2,454	7,398	18,491
	BIC	Avg.	802,841	729,356	619,589
		Std.	4,908	14,795	36,982
Clustering	$\log \mathcal{L}$	Avg.	-327,047	-309,081	-288,158
		Std.	2,087	7,237	14,354
	BIC	Avg.	655,679	620,540	579,486
		Std.	4,174	14,473	28,707

 $\mbox{Higher} \ d \Rightarrow \mbox{lower BIC. Clustering BIC} < \mbox{non-clustering BIC.}$

Discussion & Conclusion

Given the correct number of clusters and cluster assignments, a clustering MaxEnt grammar for TJ nominal phonotactics/tonotactics makes a better trade-off between likelihood and grammar size than a non-clustering grammar.

Consequence: It is theoretically advantageous to analyze the etymological strata as generated by distinct MaxEnt grammars.

Future work

- (17) What about empirical results?
 Does a clustering learner actually get to a good grammar?
- (18) **A "split" grammar**Clustering on the phonotactics, no clustering on the tonotactics.
- (19) **Try other kinds of representations and grammars** Add segmental information? Try a n-gram grammar?

Acknowledgments

Thanks to: Gaja Jarosz, Michael Becker, Shigeto Kawahara!

Thanks to: my reviewers, the LSA 2024 organizers and the audience!

References I

- Frellesvig, Bjarke (2010). A history of the Japanese language. CUP.
- Fukuzawa, Haruka (1998). "Multiple input-output faithfulness relations in Japanese". Rutgers Optimality Archive ROA-260-0698.
- Gelbart, Ben (2005). "Perception of foreignness". PhD thesis. UMass Amherst.
- Gelbart, Ben and Shigeto Kawahara (2007). "Lexical cues to foreignness in Japanese". In: *MITWPL 55*. Ed. by Yoichi Miyamoto and Masao Ochi, pp. 49–60.
- Hayes, Bruce and Colin Wilson (2008). "A maximum entropy model of phonotactics and phonotactic learning". In: *LI* 39, pp. 379–440.
- lto, Junko and Armin Mester (1995a). *Japanese phonology*. Ed. by John Goldsmith.
- (1995b). The core-periphery structure of the lexicon and constraints on reranking. Ed. by Jill Beckman, Suzanne Urbanczyk, and Laura Walsh Dickey.
- 1999). *The phonological lexicon*. Ed. by Natsuko Tsujimura.

References II

- Ito, Junko, Armin Mester, and Jaye Padgett (2001). "Alternations and distributional patterns in Japanese phonology". In: *Journal of the Phonetic Society of Japan* 5, pp. 54–60.
- Kubozono, Haruo (2006). "Where does loanword prosody come from? A case study of Japanese loanword accent". In: *Lingua* 116.7, pp. 1140–1170.
- (2011). Japanese pitch accent. Ed. by Marc van Oostendorp et al.
- Maekawa, Kikuo et al. (2013). "Balanced corpus of contemporary written Japanese". In: *Proceedings of LREC 48*, pp. 345–371.
- Moreton, Elliott and Shigeaki Amano (1999). "Phonotactics in the perception of Japanese vowel length: Evidence for long-distance dependencies". In: *Proceedings of the 6th European Conference on Speech Communication and Technology*, pp. 2679–2682.
- Morita, Takashi and Timothy J. O'Donnell (2022). "Statistical Evidence for Learnable Lexical Subclasses in Japanese". In: *Linguistic Inquiry* 53.1, pp. 87–120.

References III

- Schwarz, Gideon (1978). "Estimating the dimension of a model". In: *The Annals of Statistics* 6, pp. 461–464.
- Shaw, Jason (2006). "Learning stratified lexicon". In: ed. by Christopher Davis, Amy Rose Deal, and Youri Zabbal. Vol. 2, pp. 519–530.
- Vance, Timothy J. (2008). The sounds of Japanese. CUP.